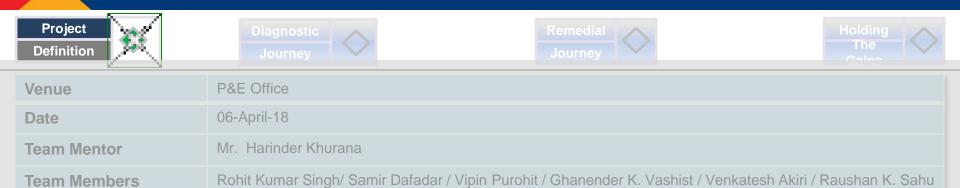


One Time Cost Saving

Asset Optimization – A step towards competency development


12 Steps Methodology of Problem Solving

Project Identification

		Che	ck Sheet	t Analys	is				
	S. No.	Description	Rohit Kr. Singh	Samir Dafadar	Vipin Purohit	Ghanender K. Vashist		Raushan K. Sahu	Total Score
	1	Smoking room improvement - filteration system for recirculatory air.	2	2	3	2	2	2	13
	2	Asset optimization - revival of old asset in cost effective manner.	4	4	4	4	3	4	23
	3	Complaint management system - reduction in nos. of complaints.	4		3	3		3	19
1	4	High lead time in repairing through OEM.	4	4	* (T1 HVAC System ❖ 06 Chillers ❖ 33 Pumps ❖ 10 Cooling towers ❖ 178 AHUs			
	5	5 S zone - existing and new area improvement in 5 S zone.	3	3	*				
	6	Operational hinderance due to upcoming phase 3A work.	1	2	2				13

Problem Statement

isting system having following issue

High Replacement Cost - OEM Monopoly!

❖ High Lead Time!

No on oito toom

❖ OEM Dependency!

04 No buyback of

Replacement Is The Only Solution!

US OVERSTOCK OF

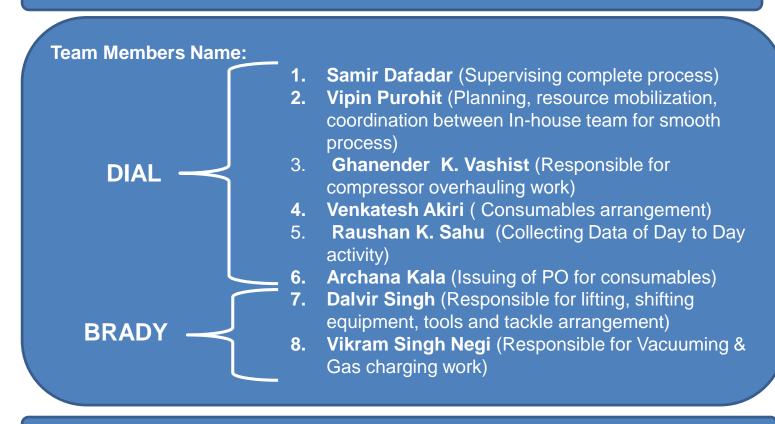
Over Stock of Spares!

Mission

Need was to develop competency to repair defective parts to avail cost effective solution.

aterial.

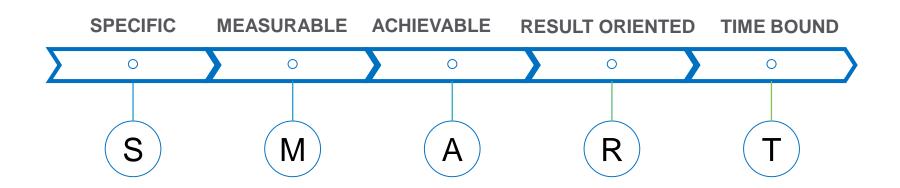
Team Constitution & Responsibilities



Team Leader Name: Rohit K. Singh (Overall Project Implementation)

Team Mentor Name: Harinder Khurana

Project Title

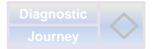


"Asset Revival of Chillers at T-1 through In-house Repairing by Dec-2018"

Initial Plan – Project Expectation

Key Indicators	Pre- Implementations	Target
Repair / Replacement Cost	High (Rotor assembly 30.5Lack)	50% reduction
Machine Serviceability	Low (<90%)	High (>98%)
Spare Availability	OEM Dependency (Imported Item)	Local Availability

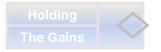
Development of engineered solution which is easily available & repairable at low cost.



More focus on performance quality so as to have better performance & life.

Activity Plan

	ACTIVITY		MONTH: Apr18 to Dec'18									
S#		RESP	M 1	M2	М3	M4	M5	М6	M7	M8	M9	REMARKS
4	Identify probable	PLAN										
'	1 solution	ACTUAL										
2	Identification of best	PLAN										
2	possible solution	ACTUAL										
2	3 Deployment of resources	PLAN										
3		ACTUAL										
4	Implementation of	PLAN										
4	solution	ACTUAL										
5	Chock the system	PLAN										
<u> </u>	Check the system	ACTUAL										
6	Lograina	PLAN										
<u> </u>	Learning	ACTUAL										



DIAGNOSTIC JOURNEY

Problem Diagnostic - Brainstorming

Project Definition

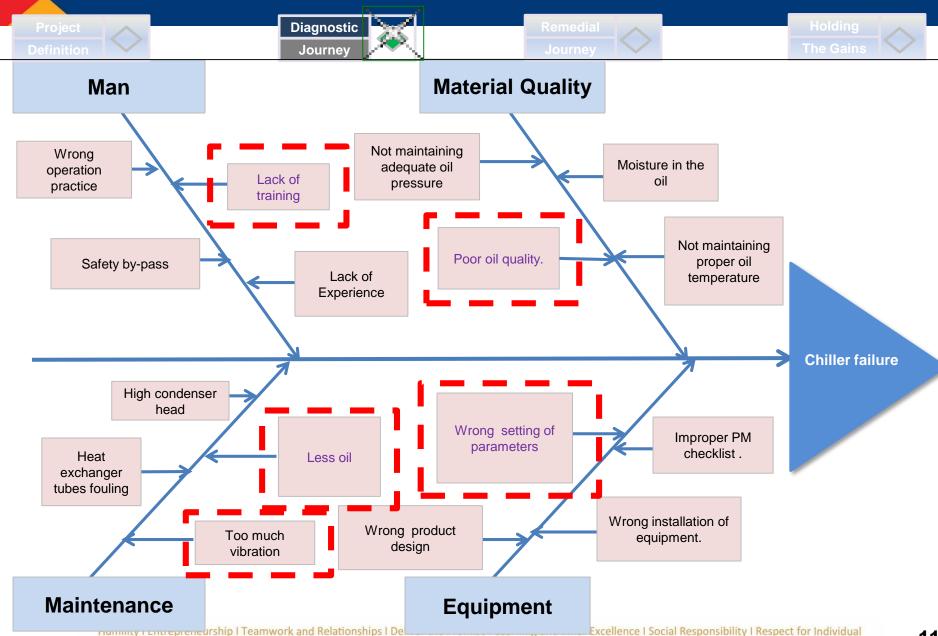
Remedial Journey

Holding The Gains

Team Members Present:

- Mr. Rohit K. Singh, P&E
- Mr. Samir Dafadar, P&E
- Mr. Ghanender K. Vashist, P&E
- Mr. Venkatesh Akiri, P&E
- Mr. Raushan K. Sahu, P&E
- Mr. Dalvir Singh, Brady
- Vipin Purohit, P&E

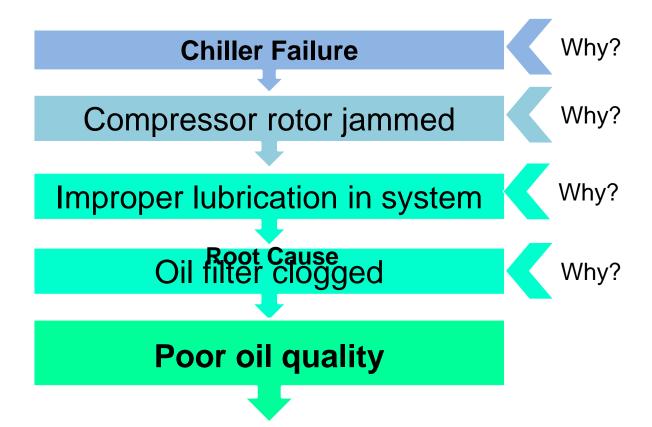
Venue: Room No. - 3 NUB


Date: 16-April-18

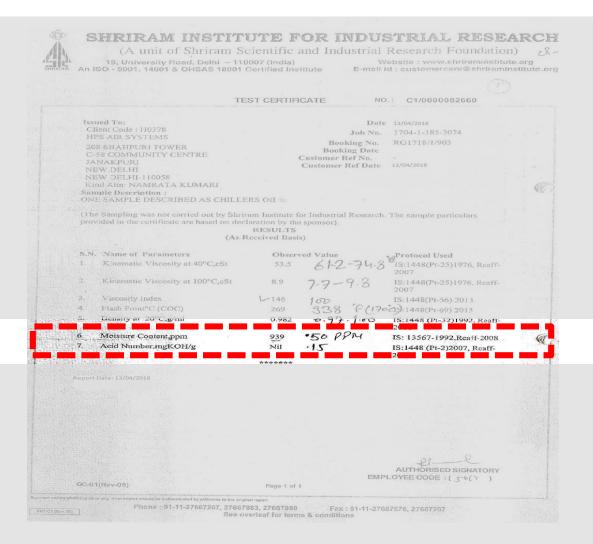
Topic: Identification of causes using fish bone diagram:-

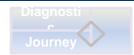
- Quantity and quality of oil in compressor.
- ▶ Oil pump functioning.
- ► Lack of Training in operating Chiller.
- ► Oil pressure and thrust bearing clearance.

Cause and Effect Analysis


Why-Why Analysis

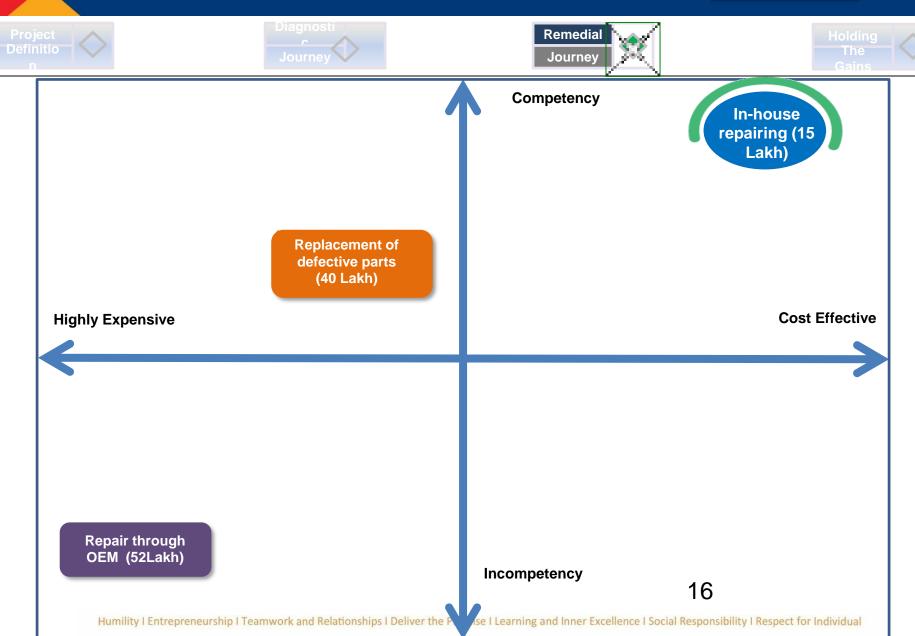
Oil Test Report



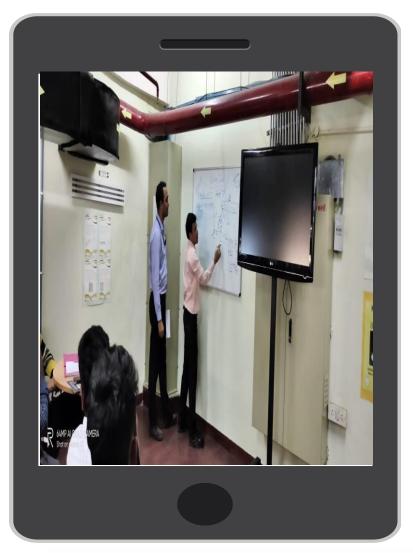


REMEDIAL JOURNEY

Probable Solutions – Heat Map Analysis

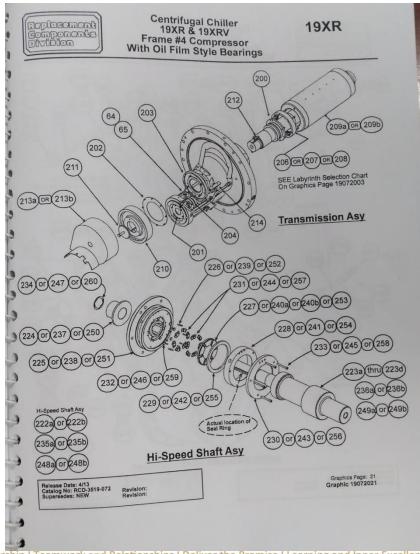

Solution Available	Rohit Kr. Singl	Samir Da	Samir Dafadar		ar Vipin Purohit		nender K. /ashist	Venkatesh Akiri		Raushan K. Sahu	
OEM Solution :- Buy spare from OEM		×		×	×		×		×		
Replacement of Existing System :- Assembly, Part or Full System		×			×		⊘		•		
Repair of Faulty Part :- In-house engineering	9	②			•		Ø		②		

Solution Evaluation


Training Session Before Starting Execution

GAR

Project Definitio Journey Journey


ROTOR ASSEMBLY SYNOPSIS

FITS AND CLEARANCES SYNOPSIS

19XR,XRV COMPRESSOR FRAME 2 THROUGH FRAME 5 FITS AND CLEARANCES (in.)

	COMPRESSOR	FRAME 2	FRAME 3	FRA	ME 4	FRA	ME 5	
	Code	201-299, 2ZZ	321-389, 3ZZ	421-487,	4B1-4W7	501-599		
ITEM	DESCRIPTION	Oll Film Bearings	Rolling Element Bearings	Oil Film Bearings	Rolling Element Bearings	Oil Film Bearings	Rolling Element Bearings	
Α	Low Speed Journal-Gear End	.0050/.0040	.0050/.0040	.0055/.0043	.0055/.0043	.0069/.0059	.0069/.0059	
В	Low Speed Journal-Motor End	.0050/.0040	.0050/.0040	.0053/.0043	.0053/.0043	.0065/.0055	.0065/.0055	
C1	Low Speed Labyrinth to Thrust Disk	.0115/.0055	N/A	.010/.005	N/A	N/A	N/A	
C2	Labyrinth to Low Speed Shaft	N/A	.010/.005	.0095/.0055	.0095/.0055	.013/.009	.013/.009	
D	Low Speed Shaft Thrust Float	.020/.008	.020/.008	.023/.008	.023/.008	.020/.008	.020/.008	
E	Impeller Eye to Shroud	*	*	*	*	*	*	
F1	Impeller Bore to Shaft-Rear	0020/0005	0025/0010	0014/0029	0014/0029	0019/0005	0019/0005	
F2	Impeller Bore to Shaft-Front	N/A	N/A	0005/0025	0005/0025	0014/.0000	N/A	
G	Impeller Discharge to Shroud	*	*		*	*	*	
Н	Impeller Spacer to Shaft	.0025/.0010	.0025/.0010	.0025/.0010	.0025/.0010	.0024/.0010	.0024/.0010	
1	Slinger to Shaft	.0013/.0005	.0012/.0004	.0012/.0004	.0012/.0004	.0012/.0004	.0012/.0004	
J	Labyrinth to Slinger	.013/.009	.010/.006	.010/.006	.010/.006	.010/.006	.010/.006	
K	Labyrinth to Impeller	.012/.008	.012/.008	.012/.008	.012/.008	.012/.008	.012/.008	
L	High Speed Journal-Impeller End	.0047/.0037	N/A	.0040/.0028	N/A	.0048/.0038	N/A	
М	Thrust Assembly Seal Ring Axial Clearance	.006/.002	N/A	.006/.002	N/A	.006/.002	N/A	
N	Thrust Assembly Seal Ring to Shaft	.0045/.0015	N/A	.0045/.0015	N/A	.0045/.0015	N/A	
0	High Speed Shaft Thrust Float	.014/.008	0 Float	.014/.008	Float	.014/.008	0 Float	
Р	High Speed Journal-Gear End	.0050/.0040	N/A	.0048/.0038	N/A	.0062/.0052	N/A	

^{*}Depends on impeller size, contact your Carrier Service Representative for more information.

1. All clearances for cylindrical surfaces are diametrical.

Dimensions shown are with rotors in the thrust position.
 Trame 0 relling element style high aread shaft and bearing.

must be removed from the high speed shaft and bearing assembly before the high speed shaft and bearing assembly can be separated from the transmission.

4. If any components within a rolling element high speed shaft and Go bearing assembly are damaged it is recommended that the entire high speed shaft and bearing assembly be replaced.

Implementation Stage

Re-engineered

ity | Entrepren

Dismantling of compressor rotor.

 Thrust bearing clearance and alignment.

Implementation Stage

Re-engineered

ity | Entrepren

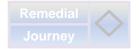
Pressure Testing & Vacuuming.

Refrigerant Charging.

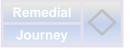
Glimpse of Defective Vs. Functional Chiller

ity | Entrepren

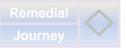
Defective Vs. Working chiller post rectification


HOLDING THE GAINS

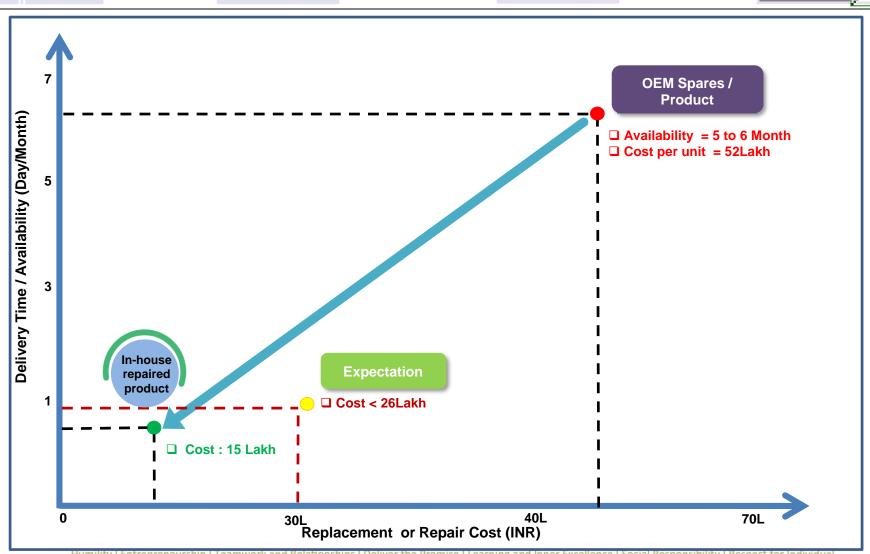
Plan Vs Actual

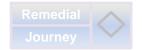

	ACTIVITY											
S#		RESP	M 1	M2	М3	M4	M5	M6	M7	M8	M9	REMARKS
1	Identify probable	PLAN										
'	1 solution	ACTUAL										
	2 Identification of best possible solution	PLAN										
2		ACTUAL										
3	Deployment of	PLAN										
3	resources	ACTUAL										
4	Implementation of	PLAN										
4	solution	ACTUAL										
5	Chook the gustom	PLAN										
5	Check the system	ACTUAL										
6	Lograina	PLAN										
6	Learning	ACTUAL										

Performance-Post Implementation


S.No	Parameter	Minimum limit	ľ	Maximum	n limit		Remarks		
1	SUCTION PRESSURE	30 PSIG	45 PSIG						
2	Discharge pressure	85 PSIG		130 PS	IG				
3	SST (SATURATED SUCTION TEMPERATURE)	CORRESF	ONDING	TEMPERATU	JRE AS PER SUC	TION PF	RESSURE		
4	SCT (SATURATED CONDENSER TEMPERATURE)	CORRESPO	NDING TI	EMPERATUR	RE AS PER DISCI	HARGE F	PRESSURE		
5	WATER IN & WATER OUT TEMPERATURE DIFFERENCE				6- 13° F				
6	LIMITS OF OIL PRESSURE	DIFFERENCE B/W DISC	CHARGE P	RESSURE 8	& OIL PRESSURE	ALWAY	S LESS THAN 90 PS	ilG	
7	OIL HEATER	IF OIL TEMP < 45° C THEN WILL ON.	HEATER	IF OIL HEA	TER > 55° C THE	EN HEATER WILL OFF.			
		OAT - OUTER AREA TE	MP.	LWT - LEAV TEMP.	ING WATER				
8	EXPANSION VALVE LIMITS	0		70					
9	CONCEPT OF SUBCOOLING		Range of subcooling = 10 DEG F +_3 DEG F						
	IF SUBCOOLING	VALUE EQUAL TO 7 DEG F AL	DD REFRII	GRANT & IF	VALUE IS 13 RE	MOVE R	EFRIGRANT.		
	SUBCOOLING = T(SCT IN DEG DEG F)	, •	SUB	COOLING M	UST BE EQUALS	S TO 10 I	DEG FAHRENHEITE	(F)	
		WE CAN CALCULATE T(S	CT) AS PE	ER DISCHAR	GE PRESSURE.				
	LIQU	JID LINE TEMP TAKEN FROM	OUTLET (OF CONDEN	SER & BEFORE	DRYER.			
10	CONCEPT OF SUPERHEAT		Range of	subcooling =	7.5 DEG C +_ 5	DEG C			
	IF SUPERHEAT VALUE EQUA	AL TO 12.5 DEG C THEN ADD	REFRIIGF	RANT & IF VA	ALUE IS 2.5 DEG	C THEN	REMOVE REFRIGRA	NT.	
	,	T = {VAPOUR (SUCTION) LINE TEMP IN DEG C - 1} - T (SST IN DEG C) SUPER HEAT MUST EQUALS TO 7.5 DEG CENTIGRADE (C)							
	1} - T (SST IN	,				U 7.5 D	EG CENTIGRADE (C	,)	
	VADOLID	WE CAN CALCULATE TO					COD		
		LINE TEMP TAKEN FROM OU IN AIR COOLED PER TR 1.25	ILETOF	VAPURATO	A DEFURE CO	DIVIPRES	JUK.		
11		KG	IN W	ATER COOL	_ED PER TR 0.9 I	KG			

Solution Outcome





Holding Gains

Key Indicators	Key Indicators Pre-Implementations		Post-Implementations	
Repair / Replacement Cost	High	50% reduction	>72% (Repair cost < INR15 Lakh)	
Machine serviceability	Machine serviceability <90%		>99%	
Spare Availability OEM Dependency (Imported)		Local Availability	In house repairing	

01

Chiller has been repaired. Savings of Rs. 37.5 Lakh is audited.

02

Maximizing the Asset Utilization by Reuse & Repair process, Improved Lead Time with saving of Man hours.

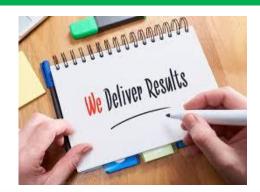
03

Breaking the Barrier of OEM Dependency & Team Confidence Building.

Benefits

Remedial Journey

One Time Saving:

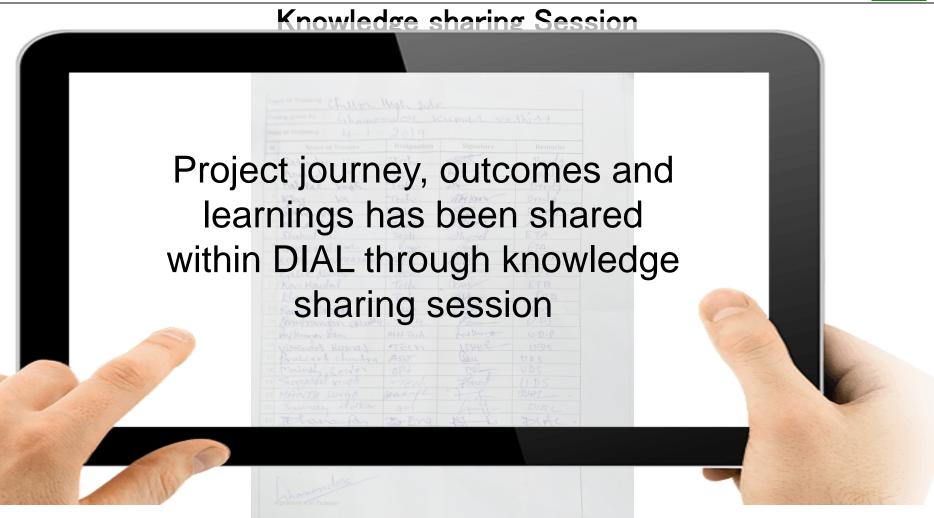

Team Work

Responsiveness

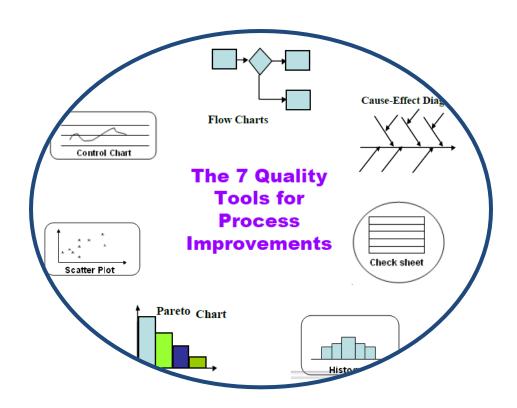
Reduce Dependency on OEM

Intangible Benefits

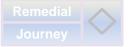
Horizontal Deployment



QC Tools Applied



- Check sheet
- Cause –Effect Diagram
- Why Why Analysis
- Brainstorming
- Heat Map Analysis



BLIP Audit Report

Project

Definition

From: Saurabh Miglani

Sent: Saturday, July 06, 2019 2:33 PM

To: Rohit Kumar Singh; Deepak Raina; Naveenkumar Saini; Samir Dafadar; Vipin Purohit; Madhu Munnam; Manish Singh; Ghanender Kumar

Vashist; Savinay Hotkar; Dhananjay Rao Nagulla; Santoshkumar Murapaka; Zirgham Ahmad Khan; Manoj Kumar Valipishetty; Viren Badyal;

Raushan Kumar Sahu; Venkatesh Akiri; Tapas Kumar Mishra; Raushan Kumar Sahu

Cc: Roy Sebastian; Harinder Khurana; Subir Hazra; Krishna Munagala; Ruchika Ahluwalia; aavmandassociates@gmail.com; Rajani Dimri

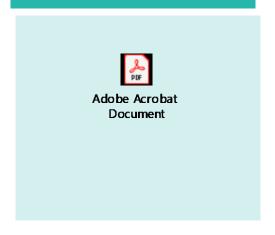
Subject: BLIP Audit Mail | 2018-19 | P&E | Mechanical

Dear Team

Thank you for the submission of the initiatives taken, kindly note the audit observations as below:

No.	Initiative Name	Claimed Value (Rs. Lakh)	Status	Audited Value (Rs. Lakh)	Audit Comments, if any
1)	, Reduction in Energy Consumption at Terminal 3	357.00	Approved	367.54	Continuing the trend, the Per Pax Energy Consumption has been brought down from 1.45 to 1.28. The same ratio was 1.63 for 2016-17 in fact there has been a saving in the absolute terms as well. However, the BLIP amount has been approved basis the per pax method. Team is expected to sustain this trend.
2)	Water conservation at Terminal Building 3	140.00	Approved	243.44	With the initiatives taken the water to pax consumption has ratio has been brought down from 5.25 to 4.79 for potable water & 17.84 to 14.9 for flush water thereby reducing the overall consumption ratio. The BLIP amount is approved basis this methodology and expect this trend to be sustained
3)	Improvement in water recovery at Terminal Buildings	771.00	Not Approved		BLIP saving has been claimed on account of Improvement in water recovery at terminal buildings. As a practice DIAL recovers only the cost involved with no element of profit
4)	Maximization of assets life by doing in-house repair works at Terminal 3	25.04	Approved	25.04	Frequent failure of FCU thermostat happened due to internal circuitry failure or external damages. Team was able to repair inhouse and prolong the utility of existing assets. On the other hand, the option was to procure a new thermostat from the OEM, and this is the basis of our calculation.
5)	Reduction of Rectification Cost of Chillers at T1	47.33	Approved	37.40	Team had utilized its competency for chiller maintenance works at T1 and utilized the unused / dead assets from T2 which were deployed since the AAI era and thereby reducing the dependency on the OEM for fresh procurement and thereby becomes our basis for the approved amount.

Appendix



Estimate of OEM

Rotor Balancing Report

